A New Class of 2-parametric Deterministic Activation Functions

Nikolay Kyurkchiev ${ }^{1,2}$, Anton Iliev ${ }^{1,2}$
Faculty of Mathematics and Informatics, University of Plovdiv Paisii Hilendarski, 24, Tzar Asen Str., 4000 Plovdiv, Bulgaria ${ }^{1}$
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 8, 1113 Sofia, Bulgaria ${ }^{2}$

Abstract

We will explore the interesting methodological task for constructing new 2-parametric deterministic activation function - (2PDAF). We prove upper and lower estimates for the Hausdorff approximation of the sign function by means of this new activation functions. Numerical examples, illustrating our results are given.

Keywords: 2-parametric deterministic activation function - (2PDAF), Sign function, Hausdorff distance, Upper and lower bounds.

I. INTRODUCTION

The interesting task of approximating the function $\operatorname{sign}(t)$ with activation functions is important in the treatment of questions related to the study of the "super saturation" - the object of the research in various fields - neural networks, bioinformatics, nucleation theory, population dynamics, engineering sciences and others. A new activation function using "correcting amendments" for example from a combination of amendment of "Gompertz - type" and "Hyperbolic Tangent - type" is considered in [3]:

where k means the number of recursive insertion of \exp (given with sign " + " in (1).
Following this idea, in this note we construct 2 -parametric deterministic activation function - (2PDAF).

II. PRELIMINARIES

Definition 1.The sign function of a real number t is defined as follows:

$$
\operatorname{sgn}(t)= \begin{cases}-1, & \text { if } \quad t<0, \tag{2}\\ 0, & \text { if } \quad t=0, \\ 1, & \text { if } \quad t>0\end{cases}
$$

Definition 2.[1] The Hausdorff distance (the H-distance) $\rho(f, g)$ between two interval functions f, g on $\Omega \subseteq \mathrm{R}$, is the distance between their completed graphs $F(f)$ and $F(g)$ considered as closed subsets of $\Omega \times \mathrm{R}$. More precisely,

$$
\begin{equation*}
\rho(f, g)=\max \left\{\sup _{A \in F(f)^{B \in F(g)}} \inf _{B A}\|A-B\|, \sup _{B \in F(g)} \inf _{A \in F(f)}\|A-B\|\right\} \tag{3}
\end{equation*}
$$

wherein $\|$.$\| is any norm in \mathrm{R}^{2}$, e. g. the maximum norm $\|(t, x)\|=\max \{|t|,|x|\}$; hence the distance between the points $A=\left(t_{A}, x_{A}\right), B=\left(t_{B}, x_{B}\right)$ in R^{2} is $\|A-B\|=\max \left(\left|t_{A}-t_{B}\right|,\left|x_{A}-x_{B}\right|\right)$.
Definition 3.We define the following "2-parametric deterministic activation function" (2PDAF):

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified
Vol. 7, Issue 3, March 2018

$$
\begin{equation*}
\varphi_{8}(t ; a, b)=\frac{a^{-b^{a^{-t}}}-a^{-b^{a^{t}}}}{a^{-b^{a^{-t}}}+a^{-b^{a^{t}}}} \tag{4}
\end{equation*}
$$

III. MAIN RESULTS

The H-distance $d\left(\operatorname{sgn}(t), \varphi_{8}(t)\right)$ between the sgn function and the function φ_{8} satisfies the relation:

$$
\begin{equation*}
\varphi_{8}(d)=\frac{a^{-b^{a^{-d}}}-a^{-b^{a^{d}}}}{a^{-b^{a^{-d}}}+a^{-b^{a^{d}}}}=1-d \tag{5}
\end{equation*}
$$

The following Theorem gives upper and lower bounds for d

Theorem. For the Hausdorff distance d between the sgn function and the function φ_{8} the following inequalities hold for

$$
\begin{gather*}
b(\ln a)^{2} \ln b>\frac{e^{2}}{2}-1 \\
d_{l}=\frac{1}{2\left(1+b(\ln a)^{2} \ln b\right)}<d<\frac{\ln \left(2\left(1+b(\ln a)^{2} \ln b\right)\right)}{2\left(1+b(\ln a)^{2} \ln b\right)}=d_{r} . \tag{6}
\end{gather*}
$$

Proof. We define the functions

$$
\begin{align*}
& F(d)=\frac{a^{-b^{a^{-d}}}-a^{-b^{a^{d}}}}{a^{-b^{a^{-d}}}+a^{-b^{a^{d}}}}-1+d, \tag{7}\\
& G(d)=-1+\left(1+b(\ln a)^{2} \ln b\right) d . \tag{8}
\end{align*}
$$

From Taylor expansion we find (see, Fig. 1)

$$
F(d)-G(d)=O\left(d^{3}\right)
$$

In addition $G^{\prime}(d)>0$.
We look for two reals d_{l} and d_{r} such that $G\left(d_{l}\right)<0$ nad $G\left(d_{r}\right)>0$ (leading to $G\left(d_{l}\right)<G(d)<G\left(d_{r}\right)$ and thus $\left.d_{l}<d<d_{r}\right)$.
Trying $d_{l}=\frac{1}{2\left(1+b(\ln a)^{2} \ln b\right)}$ and $d_{r}=\frac{\ln \left(2\left(1+b(\ln a)^{2} \ln b\right)\right)}{2\left(1+b(\ln a)^{2} \ln b\right)}$ we obtain for $b(\ln a)^{2} \ln b>\frac{e^{2}}{2}-1$

$$
G\left(d_{l}\right)<0 ; G\left(d_{r}\right)>0
$$

This completes the proof of the inequalities (6).
Approximation of the $\operatorname{sgn}(t)$ by (2PDAF)-function for $a=3.9, b=3.8$ is visualized on Fig. 2.

Fig. 1: The functions $F(d)$ and $G(d)$ for $a=3.9, b=3.8$.

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified Vol. 7, Issue 3, March 2018

Fig 2: Approximation of the $\operatorname{sgn}(t)$ by (2PDAF) for $a=3.9, b=3.8$; Hausdorff distance: $d=0.134639$;

$$
d_{l}=0.0480931 ; d_{r}=0.145944
$$

From the graphics it can be seen that the "saturation" is faster. For other results, see [2]-[5].

REMARK

The reader can be formulate the "General case" using k recursive insertion of a and b in (5) as well to explore respectively approximation task.

ACKNOWLEDGMENT

This work has been supported by the project FP17-FMI-008 of Department for Scientific Research, Paisii Hilendarski University of Plovdiv.

REFERENCES

[1] Hausdorff F. (1962) Set Theory (2 ed.), New York, Chelsea Publ.
[2] Kyurkchiev N., A. Iliev, S. Markov (2017) Some techniques for recurrence generating of activation functions, LAP LAMBERT Academic Publishing; ISBN 978-3-330-33143-3.
[3] Kyurkchiev, N., A new class of activation functions based on the correcting amendments, Int. J. for Scientific Research and Development, 6 (2), 2018, (accepted).
[4] Kyurkchiev, N., The new transmuted C.D.F. based on Gompertz function, Biomath Communications, 5 (1), 2018
[5] Pavlov, N., G. Spasov, A. Rahnev, N. Kyurkchiev, Some deterministic reliability growth curves for software error detection: approximation and modeling aspects, IJPAM, 118, 2018, (accepted).

